

GT14M 'PowerTrap' Mechanical Pump w/ Steam Trap

Features

Pump/Trap with built-in steam trap for a wide range of applications: drainage of medium capacity heat exchangers, flash steam recovery systems and reservoirs, often operating under vacuum conditions.

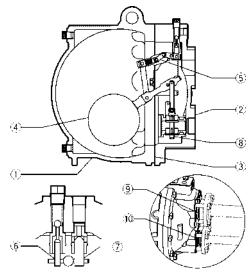
- 1. Handles high-temperature condensate without cavitation.
- No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head (min. 350 mm).
- 4. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 5. High-quality stainless steel internals and hardened working surfaces ensure reliability.
- 6. Compact design permits installation in a limited space.

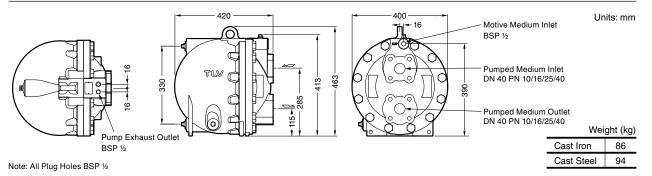
Specifications

Model			GT14M		
Body Material			Cast Iron	Cast Steel	
Connection	Pumped Medium Inlet & Outlet		Flanged*		
Connection	Motive Medium & Pum	Exhaust	Screwed		
Size	Pumped Medium: Inlet × Outlet		DN 40 × DN 40		
	Motive Medium Inlet		1/2"		
	Pump Exhaust Outlet		1/2"		
Maximum Ope	aximum Operating Pressure (barg) PMO		13	14	
Maximum Operating Temperature (°C) TMO		200	220		
Motive Mediur	lium Pressure Range (barg) 0.3		0.3 – 13	0.3 – 14	
Maximum Allowable Back Pressure		0.5 bar less than motive medium pressure used			
Volume of Each Discharge Cycle (ℓ)		Approx. 12.5			
Motive Medium**		Saturated Steam			
Pumped Medium***		Steam Condensate, Water			

^{*} For details of flange connection, see picture at bottom right. ** Do not use with toxic, flammable or otherwise hazardous fluids. *** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids.

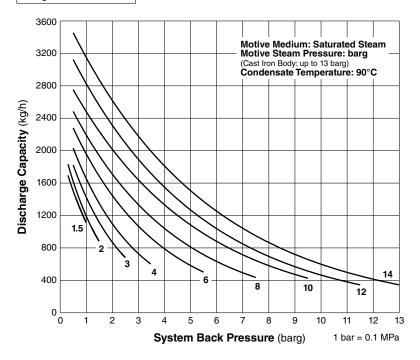
1 bar = 0.1 MPa


PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 13 (Cast Iron), 21 (Cast Steel) Maximum Allowable Temperature (°C) TMA: 200 (Cast Iron), 260 (Cast Steel)


To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

No.	Description		Material	DIN*	ASTM/AISI*
1	Body		Cast Iron FC250	0.6025	A126 Cl.B
			Cast Steel**	1.0619	A216 Gr.WCB
(2)	Cover		Cast Iron FC250	0.6025	A126 Cl.B
(2)			Cast Steel**	1.0619	A216 Gr.WCB
3	Cover Gasket		Graphite Compound	_	_
4	Float		Stainless Steel SUS316L	1.4404	AISI316L
(5)	Snap-action Unit		Stainless Steel	_	_
(6)	Motive Medium Intake Valve Unit	Inlet Valve	Stainless Steel SUS440C	1.4125	AISI440C
0		Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F
(7)	Exhaust Valve Unit	Exhaust Valve	Stainless Steel SUS440C	1.4125	AISI440C
0		Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F
8	Steam Trap Unit		Stainless Steel	_	_
9	Inlet Check Valve CKF5M		Stainless Steel SUS304	1.4301	AISI304
10	Outlet Check Valve CKF3M		Cast Stainless Steel A351 Gr.CF8	1.4312	_

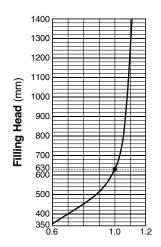
^{*} Equivalent materials ** Option: Cast Stainless Steel



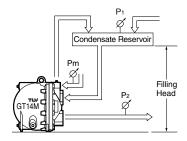
Dimensions

Discharge Capacity

Connection:	Flanged
Inlet size:	DN 40
Outlet size:	DN 40
Check Valve:	
Inlet (CKF5M):	DN 40
Outlet (CKF3M):	DN 40
Filling Head:	630 mm



NOTE:


- A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GT14M configuration, TLV check valves CKF5M for inlet and CKF3M for outlet must be used.
- Motive steam pressure minus back pressure must be greater than 0.5 bar.
- A strainer must be installed at the motive medium and pumped medium inlets.

Correction Factor

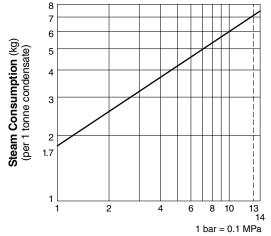
For GT14M installed with filling head other than 630 mm (minimum filling head: 350 mm)

Illustration of Filling Head and Pressures

The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).

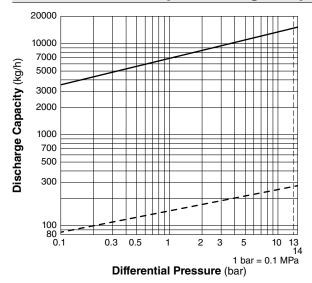
Make sure that:
Discharge Capacity × Correction Factor
> Required Flow Rate

Size of Reservoir


The reservoir must have a capacity sufficient to store the condensate produced during the **PowerTrap** operation and discharge.

Size of Reservoir (flash steam is not involved)

Amount of Condensate	Reservoir Diameter (mm) and Length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0


Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P2) equals 2 or greater (when Pm \div P2 \geqq 2).

Steam Consumption (Motive Medium)

Back Pressure (barg)

GT14M Steam Trap Discharge Capacity

- : Capacity of GT14M as a steam trap (P1 > P2). Instantaneous condensate loads above the rated trap capacity will cause the pump to cycle and therefore reduce the discharge capacity.
- ---: Minimum amount of condensate required to prevent steam leakage.
- 1. Capacities are based on continuous discharge of condensate 6 $^{\circ}\text{C}$ below steam temperature.
- 2. Differential pressure is the difference between inlet and outlet pressure of the trap.

DO NOT use this product under conditions that exceed maximum differential pressure, as condensate backup will occur!