

GT14 'PowerTap' Mechanical Pump w/ Steam Trap

Features

Pump/trap with built-in steam trap for a wide range of applications: drainage of heat exchangers, flash steam recovery systems and non-vented receivers such as low-pressure stages of turbines and absorption chillers, often operating under vacuum conditions.

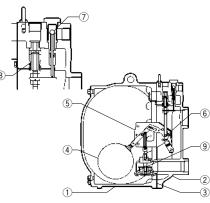
- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence
- INTRINSICALLY SAFE. 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. Easy, inline access to internal parts simplifies cleaning and reduces
- maintenance costs.
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability

Pressure Equipment Directive (PED)

Classification according to PED 2014/68/EU, fluid group 2

Size	Category	CE marking		
DN 50. DN 80		With CE marking and Declaration of Conformity		

Specifications

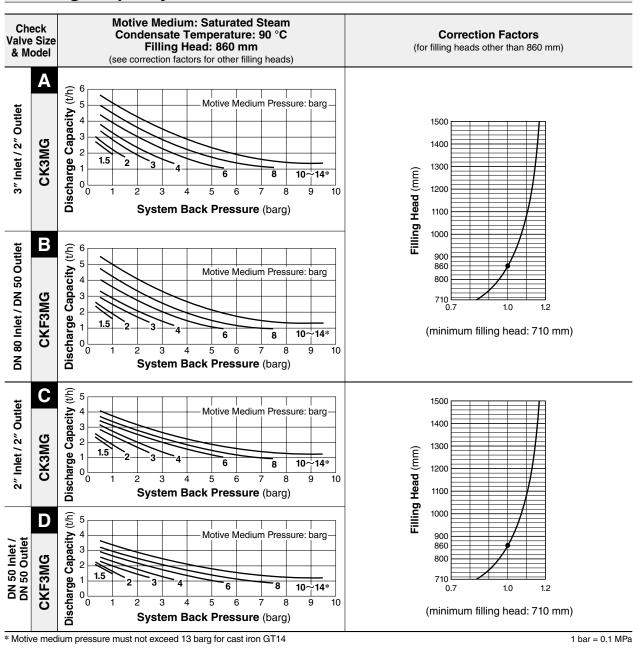

Model		GT14			
Body Materia	l	Cast Iron	Cast Iron		
Composition	Pumped Medium Inlet & Outlet	Screwed	Screwed	Flanged	
Connection	Motive Medium & Pump Exhaust	Screwed	Screwed	Flanged	
	Pumped Medium: Inlet × Outlet	3″×2″		DN 50 × 50, DN 80 × 50	
Size	Motive Medium Inlet	1″	1″		
	Pump Exhaust Outlet	1″		DN 25	
Maximum Op	erating Pressure (barg) PMO	13		14	
Maximum Op	erating Temperature (°C) TMO	200			
Motive Mediu	m Pressure Range (barg)	0.3 – 13	0.3 - 14		
Maximum Allo	owable Back Pressure	0.5 bar less than motive medium pressure used, but not to exceed 10.5 barg			
Volume of Ea	ch Discharge Cycle (l)	approximately 30			
Motive Mediu	m*	Saturated Steam			
Pumped Med	lium**	Steam Condensate			
Option Specif	fications for Hazardous Locations	ATEX: 🖾 II2G Ex h IIC T3 Gb			

* Do not use with toxic, flammable or otherwise hazardous fluids. ** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids. 1 bar = 0.1 MPa PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 13 (Cast Iron), 16 (Cast Steel)

Maximum Allowable Temperature (°C) TMA: 200 (Cast Iron) 220 (Cast Steel) To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range.

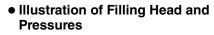
Lood regulations may restrict the use of this product to below the contaitone quoted.	JTION	Local regulations may restrict the use of this product to below the conditions quoted.
---	-------	--

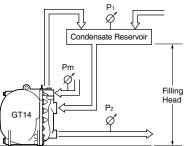
No.	Descr	iption	Material	DIN*	ASTM/AISI*			
	Body		Cast Iron FC250	0.6025	A126 CI.B			
1			Cast Steel** A216 Gr.WCB	1.0619	_			
(2)	Cover		Cast Iron FC250	0.6025	A126 CI.B			
2			Cast Steel** A216 Gr.WCB	1.0619	—			
3	Cover Gasket		Graphite/Stainless Steel SUS316L	-/1.4404	-/AISI316L			
4	Float		Stainless Steel SUS316L/303	1.4404/1.4305	AISI316L/303			
5	Lever Unit		Stainless Steel	—	—			
6	Snap-action Unit		Stainless Steel	—	—			
	Motive	Intake Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C			
7	Medium Intake Valve Unit	Valve Seat	Cast Stainless Steel A351 Gr.CF8/ Stainless Steel SUS440C	1.4312/ 1.4125	-/ AISI440C			
(8)	Exhaust Valve Unit	Exhaust Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C			
(8)		Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F			
9	Trap Unit		Stainless Steel	_				
(10)	Check	eck CK3MG Cast Stainless Steel		1.4312	_			
0	Valve***	CKF3MG	Cast Stainless Steel A351 Gr.CF8	1.4312	_			



* Equivalent materials ** Option: Cast Stainless Steel

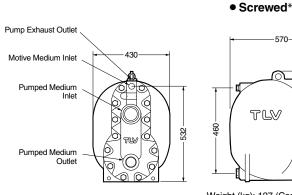
*** Not shown, model depends on GT14 connection; CK3MG for screwed, CKF3MG for flanged


ValvesTubesFittings.com


Discharge Capacity

NOTE:

- A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GT14 configuration, TLV CK3MG or CKF3MG check valves must be used.
- Motive medium pressure minus back pressure must be greater than 0.5 bar.
- A strainer must be installed at the motive medium and pumped medium inlets.



The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).

Make sure that: Discharge Capacity × Correction Factor > Required Flow Rate

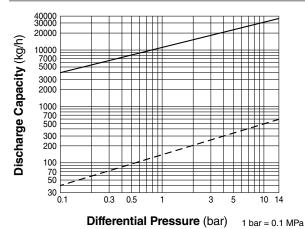
ValvesTubesFittings.com

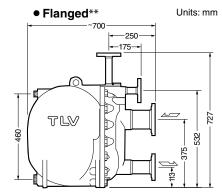
Dimensions

Weight (kg): 127 (Cast Iron), 139 (Cast Steel) * BSP DIN 2999, other standards available

Note: All plug holes BSP or NPT $\ensuremath{^{1\!\!/}_{\!\!\!2}}$ depending on connection type

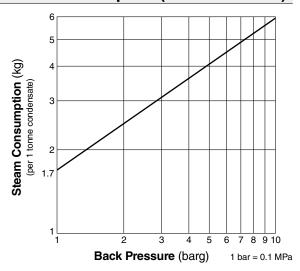
Size of Reservoir


The reservoir must have a capacity sufficient to store the condensate produced during the PowerTrap operation and discharge.


Size of Reservoir	(flash steam	is not involved)
-------------------	--------------	------------------

Amount of Condensate	Reservoir Diameter (mm) and Length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P₂) equals 2 or greater (when Pm \div P₂ \ge 2).


GT14 Steam Trap Discharge Capacity

Weight (kg): 149 (Cast Steel) ** DIN 2501 PN 25/40, ASME Class 150 RF, other standards available

Steam Consumption (Motive Medium)

 Capacity of GT14 as a steam trap (P₁ > P₂). Instantaneous condensate loads above the rated trap capacity will cause the pump to cycle and therefore reduce the discharge capacity.

- ---- : Minimum amount of condensate required to prevent steam leakage.
- 1. Capacities are based on continuous discharge of condensate 6 $^{\circ}\text{C}$ below steam temperature.
- 2. Differential pressure is the difference between inlet and outlet pressure of the trap.

DO NOT use this product under conditions that exceed maximum differential pressure, as condensate backup will occur

ValvesTubesFittings.com